Stern-Gerlach Device Oriented at an Arbitrary Angle

Orient the SG machine such that the magnetic field gradient is in the \hat{u} direction

A beam of neutral Ag atoms sent through a device oriented in this way will produce a beam in this spin state:

$$\widehat{S}_{u} = \frac{\hbar}{2} \begin{pmatrix} \cos\theta & \sin\theta \ e^{-i\varphi} \\ \sin\theta \ e^{+i\varphi} & -\cos\theta \end{pmatrix}$$

The eigenvalues of the \hat{S}_u operator are $\pm \hbar/2$. The "up" and "down" eigenfunctions are:

$$|\uparrow\rangle_{u} = \cos\frac{\theta}{2} e^{-i\varphi/2} |\uparrow\rangle_{z} + \sin\frac{\theta}{2} e^{+i\varphi/2} |\downarrow\rangle_{z} \qquad |\downarrow\rangle_{u} = -\sin\frac{\theta}{2} e^{-i\varphi/2} |\uparrow\rangle_{z} + \cos\frac{\theta}{2} e^{+i\varphi/2} |\downarrow\rangle_{z}$$

Stern-Gerlach Device Oriented at an Arbitrary Angle

Use the first SG machine to create a beam of Ag atoms in the $|\uparrow\rangle_u$ eigenstate

Now use a second SG machine to perform an \hat{S}_z measurement of this beam. What is the outcome?

Example: Suppose $\theta = \pi/2$ and $\varphi = 0$ ($\hat{u} = \hat{x}$), then $|_{z}\langle \uparrow | \uparrow \rangle_{u}|^{2} = \frac{1}{2}$ and $|_{z}\langle \downarrow | \uparrow \rangle_{u}|^{2} = \frac{1}{2}$

Note that this is different from Malus's Law for optical polarization (polarizer and analyzer)

